Production of Biodiesel Using Immobilized Lipase and the Characterization of Different Co-Immobilizing Agents and Immobilization Methods

نویسندگان

  • Kang Zhao
  • Meng Wang
  • Li Deng
  • Fang Wang
چکیده

Lipase from Candida sp. 99–125 is widely employed to catalyzed transesterification and can be used for biodiesel production. In this study, the lipase was immobilized by combined adsorption and entrapment to catalyze biodiesel production from waste cooking oil (WCO) via transesterification, and investigating co-immobilizing agents as additives according to the enzyme activity. The addition of the mixed co-immobilizing agents has positive effects on the activities of the immobilized lipase. Three different immobilizing methods were compared by the conversion ratio of biodiesel and structured by Atom Force Microscopy (AFM) and Scanning Electron Microscopy (SEM), respectively. It was found that entrapment followed by adsorption was the best method. The effect of the co-immobilizing agent amount, lipase dosage, water content, and reuse ability of the immobilized lipase was investigated. By comparison with previous research, this immobilized lipase showed good reuse ability: the conversion ratio excesses 70% after 10 subsequent reactions, in particular, was better than Novozym435 and TLIM on waste cooking oil for one unit of lipase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipase Immobilized into Novel GPTMS: TMOS Derived Sol-Gels and Its Application for Biodiesel Production from Waste Oil

In this essay, lipase from Burkholderia cepacia was immobilized into 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS) derived sol-gels. GPTMS:TMOS molar ratio of 1:3 was found to yield the best result. The morphological characteristics were investigated based on SEM and BET analysis. Sample mean pore diameter was 39.1 nm, it had a specific surface area of 60 m2/g prior to...

متن کامل

Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis

Background: Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective: The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorpti...

متن کامل

Optimization of Biodiesel Production Using Immobilized Candida Rugosa Lipase on Magnetic Fe3O4-Silica Aerogel

Hydrophobic magnetic silica aerogel was used as a support to immobilize Candida rugosa lipase by adsorption method. Physical and chemical properties of the support and immobilized lipase were determined by Field Emission Scanning Electron Microscope (FESEM), Brunauer–Emmett–Teller (BET) analysis and Fourier Transform InfraRed (FT-IR) spectroscopy and the results showed that the lipase was s...

متن کامل

Development of Clay Foam Ceramic as a Support for Fungi Immobilization to Biodiesel Production (RESEARCH NOTE)

Biodiesel is an attractive alternative fuel because of its nontoxicity and biodegradability properties. Biodiesel is produced through transesterification of vegetable oils’ triglyceride. It is obtained from vegetable oils or fats either by chemical or enzyme-catalyzed transesterification with methanol or ethanol. By using whole-cell biocatalyst immobilized within biomass support particles (BSPs...

متن کامل

Immobilizing Phosphotungstic Acid on Al2O3-ZnO Nano Mixed Oxides as Heterogeneous Catalyst for Biodiesel Production by Esterification of Free Fatty Acids

In this study, esterification reaction of different carboxylic acids (Acetic acid, Palmitic acid, Oleic acid) with ethanol was investigated by ZnO, Al2O3-ZnO mixed oxide and phosphotungestic acid (10 %wt) immobilized on the Al2O3-ZnO mixed oxide. The heterogeneous catalysts were characterized by XRD, BET, FE-SEM and EDX techniques. Optimum yield was achieved by using 10% HPW/Al2O3-ZnO as the be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016